Introduction to Transformer Rated Meters

Module 141

87rd Annual Short Course and Conference

Southeastern Electricity Metering Association

November, 2012 Orlando, FL

Larry Waters General Electric Company Atlanta, GA

- Self Contained Meters
 - Usually class 100, 200 or 320 (max. amps)
 - Up to 480 volts (some higher, e.g. Canada)
 - Smaller loads
 - Average homes and small commercial
 - Voltages and currents connect to same terminals; load currents flow through meter
 - The meter multiplier is 1 (typically)

- Self Contained Meters
 - Voltages and currents connect to same terminals; load currents flow through meter

 The meter multiplier is 1 (typically); may be 10 depending on how "dials" are displayed

- Transformer Rated Meters --
 - Class 10 or 20; generally CL 20 today
 - Load currents above 200 amps and/or voltages above 480v. (typically)
 - Used with voltage transformers and/or current transformers
 - Larger commercial and industrial customers; large homes
 - Voltages and currents connect to separate terminals on meter
 - The meter multiplier is *not* 1 (normally)

- Transformer Rated Meters --
 - Voltages and currents connect to separate terminals on meter

 The meter multiplier is not 1 (normally); it is the product of the VT and CT ratios

Transformer Rated Meters - Safety

Transformer Rated Meters

The "ratio" is expressed as X to Y (X:Y) and represents the rated primary value as compared to the secondary value.

Meter Multipliers

- Current transformers but no voltage transformers -
 - Example: 400 amp primary (service)
 - 400 amp to 5 amp (400:5) current transformer
 - -80:1 ratio (400/5 = 80)
 - The meter multiplier, then, is 80

Meter Multipliers

- Current transformers and voltage transformers -
 - Example: Service is 12470Y/7200 volts and rated 400 amps
 - VT's are connected phase to neutral 7200:120 or 60:1
 - 400 amp to 5 amp (400:5) current
 transformers 80:1)
 - The meter multiplier, then, is 60 x 80 or 4800

Meter Multipliers

- "Dial" Multipliers and Primary Reading Registers
 - Meter register must show the actual primary usage values
 - Example: Transformer Factor is 4800
 - Meter multiplies values by 4800 and displays result
 - A dial multiplier may be required to prevent "wrap around", e.g. x100, x1000, etc.

Blondel's Theorem

Blondel says:

If energy be supplied to any system of conductors through N wires, the total power in the system is given by the algebraic sum of readings of N wattmeters, so arranged that each of the N wires contains one current coil, the corresponding potential coil being connected between that wire and some common point. If this common point is on one of the N wires, the measurement may be made by the use of N-1 wattmeters.

Andre E. Blondel, 1893

- We would use "watthour meters" in place of "watt meters" and "energy" in place of "power".
- We would also consider "ground" as a possible current carrying conductor when counting "N".

What is a meter Form Number?

- A Form designation tells us:
 - The number and arrangement of meter terminals, and
 - The number and *internal connection* of meter elements (stators).
- The Form designation describes the meter, not the service.
 - With modern meters, some meter Forms may be used to correctly meter more than one service configuration.
 - More than one meter Form could be used with a particular service depending on the connection of the Instrument Transformers.
- The same Form designation is usually applicable to equivalent meters of all manufacturers.

Basic Meter Forms

Meter	S.C./	Number of	Number of	Number of External
Form	T.R.	Stators	Current Circuits	Circuit Wires
1S, 1A	SC	1	1	2
2S, 2A	SC	1	2	3
3S, 3A	TR	1	1	2
4S, 4A	TR	1	2	3
5S, 5A	TR	2	2	3 (or 4)
35S, 35A	TR	2	2	3*
45S, 45A	TR	2	2	3 (or 4)
6S, 6A	TR	2	3	4Y
36S, 36A	TR	2	3	4Y
8S, 8A	TR	2	3	4Δ
9S, 9A	TR	3	3	4Y (or ∆**)
12S, 12A	SC	2	2	3
14S, 14A	SC	2	3	4Y
15S, 15A	SC	2	3	4Δ
16S, 16A	SC	3	3	4Y (or ∆**)

* Not intended for Form 5S equivalent, 4 wire delta connections. ** Some electronic meters may be used in 4wY or $4w\Delta$ circuits.

SC = Self Contained; TR = Transformer Rated S = Socket Base; A = Bottom Connected

Self Contained vs Transformer Rated

A LINE

What is one of the key differences . . .

... when we look at ANSI forms?

C LINE N LINE LINE V LINE V LINE V LINE V LINE V LOAD V LOAD

Self-Contained

Transformer-Rated

Applicable ANSI Meter Forms

Form 3S* 1 Element, Transformer Rated 2 wire, single phase, 3 wire, single phase

Form 4S* "1-1/2" Element, Transformer Rated 3 wire, single phase

* ANSI Forms looking from the front of the meter

Applicable ANSI Meter Forms

* ANSI Forms looking from the front of the meter

Polyphase Meters

4 Wire Wye Services

4 wire Wye Metering

Transformer-rated

4 wire, Wye Metering

Transformer-rated

4 Wire, Delta Metering

Summary

- Transformer rated meters are required when voltages and currents exceed the meter's direct connect capability
- A form designation tells us about the number or terminals, their location and the internal meter wiring
- In CT and VT connections, polarity must be observed for metering to be correct
- CT's must be shorted when not in use; VT's should not be shorted
- Meter multipliers are critical in transformer rated applications